Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(3): 493-507, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849558

RESUMO

How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Meduloblastoma/genética , Fosforilação , Epigenômica , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Neoplasias Cerebelares/genética , Epigênese Genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
J Neurosurg Spine ; : 1-9, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005015

RESUMO

OBJECTIVE: Stereotactic radiosurgery (SRS) has been used to treat trigeminal neuralgia by targeting the cisternal segment of the trigeminal nerve, which in turn triggers changes in the gasserian ganglion. In the lumbar spine, the dorsal root ganglion (DRG) is responsible for transmitting pain sensitivity and is involved in the pathogenesis of peripheral neuropathic pain. Therefore, radiosurgery to the DRG might improve chronic peripheral pain. This study evaluated the clinical and histological effects of high-dose radiosurgery to the DRG in a rodent model. METHODS: Eight Sprague-Dawley rats received either 40- or 80-Gy SRS to the fifth and sixth lumbar DRGs using the Leksell Gamma Knife Icon. Animals were euthanized 3 months after treatment, and the lumbar spine was dissected and taken for analysis. Simple histology was used to assess collagen deposition and inflammatory response. GFAP, Neu-N, substance P, and internexin were used as a measure of peripheral glial activation, neurogenesis, pain-specific neurotransmission, and neurotransmission in general, respectively. The integrity of the spinothalamic tract was assessed by means of the von Frey test. RESULTS: The animals did not exhibit any signs of motor or sensory deficits during the experimentation period. Edema, fibrosis, and vascular sclerotic changes were present on the treated, but not the control, side. SRS reduced the expression of GFAP without affecting the expression of Neu-N, substance P, or internexin. The von Frey sensory perception elicited equivalent results for the control side and both radiosurgical doses. CONCLUSIONS: SRS did not alter sensory or motor function but reduced the activation of satellite glial cells, a pathway for DRG-mediated pain perpetuation. Radiosurgery provoked changes equivalent to the effects of focal radiation on the trigeminal ganglion after SRS for trigeminal neuralgia, suggesting that radiosurgery could be successful in relieving radiculopathic pain.

3.
World Neurosurg ; 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30593969

RESUMO

BACKGROUND: Stereotactic radiosurgery (SRS) is an effective technique to create lesions of the trigeminal nerve to treat refractory trigeminal neuralgia. In the lumbar spine, the dorsal root ganglion (DRG) contains the body of the sensory neurons responsible for pain sensitivity. Neuromodulation of the DRG might therefore improve chronic peripheral pain. This study was performed to determine the feasibility, clinical, and histologic effects of delivering high-dose SRS targeted to the lumbar DRG in a rat model. METHODS: Four Sprague Dawley male rats underwent 80 Gy maximum-dose single-fraction SRS to the left L5 and L6 DRG using the Leksell Gamma Knife Icon (Elekta, Atlanta, Georgia, USA). The right L5 and L6 DRGs served as controls. The animals were evaluated for motor and sensory deficits every 2 weeks and were sacrificed at 3 and 6 months after SRS. Common histologic techniques were used to assess for fibrosis and demyelination at the target levels. RESULTS: No detectable motor or sensory deficits were seen in any animal. Histologic changes including fibrosis and loss of myelin were noted to the left L5 and L6 DRGs, but not the right side control DRGs. Fibrotic changes within the vertebral body were also evident on the treated sides of the vertebral bodies. CONCLUSIONS: We were able to detect a demyelinating response from SRS delivered to the DRG in rats. Because such changes mimic those seen after trigeminal SRS in experimental animals, we hypothesize that radiosurgery may be a potential option in chronic spinal radicular pain amenable to neuromodulation.

4.
Ann Biomed Eng ; 46(10): 1450-1464, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30014286

RESUMO

Microsurgical procedures, such as petroclival meningioma resection, require careful surgical actions in order to remove tumor tissue, while avoiding brain and vessel damaging. Such procedures are currently performed under microscope magnification. Robotic tools are emerging in order to filter surgeons' unintended movements and prevent tools from entering forbidden regions such as vascular structures. The present work investigates the use of a handheld robotic tool (Micron) to automate vessel avoidance in microsurgery. In particular, we focused on vessel segmentation, implementing a deep-learning-based segmentation strategy in microscopy images, and its integration with a feature-based passive 3D reconstruction algorithm to obtain accurate and robust vessel position. We then implemented a virtual-fixture-based strategy to control the handheld robotic tool and perform vessel avoidance. Clay vascular phantoms, lying on a background obtained from microscopy images recorded during petroclival meningioma surgery, were used for testing the segmentation and control algorithms. When testing the segmentation algorithm on 100 different phantom images, a median Dice similarity coefficient equal to 0.96 was achieved. A set of 25 Micron trials of 80 s in duration, each involving the interaction of Micron with a different vascular phantom, were recorded, with a safety distance equal to 2 mm, which was comparable to the median vessel diameter. Micron's tip entered the forbidden region 24% of the time when the control algorithm was active. However, the median penetration depth was 16.9 µm, which was two orders of magnitude lower than median vessel diameter. Results suggest the system can assist surgeons in performing safe vessel avoidance during neurosurgical procedures.


Assuntos
Algoritmos , Microcirurgia/instrumentação , Procedimentos Neurocirúrgicos/instrumentação , Segurança , Humanos , Microcirurgia/métodos , Procedimentos Neurocirúrgicos/métodos
5.
PLoS One ; 13(6): e0197296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856748

RESUMO

BACKGROUND: Coronal suture synostosis is a condition which can have deleterious physical and cognitive sequelae in humans if not corrected. A well-established animal model has previously demonstrated disruptions in intracranial pressure and developmental abnormalities in rabbits with congenital craniosynostosis compared to wild type rabbits. OBJECTIVE: The current study aimed to measure the cerebral blood flow (CBF) in developing rabbits with craniosynostosis who underwent suturectomy compared to those with no intervention and compared to wild type rabbits. METHODS: Rabbits with early onset coronal suture synostosis were assigned to have suturectomy at 10 days of age (EOCS-SU, n = 15) or no intervention (EOCS, n = 18). A subset of each group was randomly selected for measurement at 10 days of age, 25 days of age, and 42 days of age. Wild type rabbits (WT, n = 18) were also randomly assigned to measurement at each time point as controls. Cerebral blood flow at the bilateral hemispheres, cortices, thalami, and superficial cortices was measured in each group using arterial spin-labeling MRI. RESULTS: At 25 days of age, CBF at the superficial cortex was significantly higher in EOCS rabbits (192.6 ± 10.1 mL/100 mg/min on the left and 195 ± 9.5 mL/100 mg/min on the right) compared to WT rabbits (99.2 ± 29.1 mL/100 mg/min on the left and 96.2 ± 21.4 mL/100 mg/min on the right), but there was no significant difference in CBF between EOCS-SU (97.6 ± 11.3 mL/100 mg/min on the left and 99 ± 7.4 mL/100 mg/min on the right) and WT rabbits. By 42 days of age the CBF in EOCS rabbits was not significantly different than that of WT rabbits. CONCLUSION: Suturectomy eliminated the abnormally increased CBF at the superficial cortex seen in EOCS rabbits at 25 days of age. This finding contributes to the evidence that suturectomy limits abnormalities of ICP and CBF associated with craniosynostosis.


Assuntos
Envelhecimento , Córtex Cerebral , Circulação Cerebrovascular , Craniossinostoses/fisiopatologia , Craniossinostoses/cirurgia , Animais , Velocidade do Fluxo Sanguíneo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiopatologia , Humanos , Coelhos , Fatores de Tempo
6.
Robot Surg ; 4: 107-114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170740

RESUMO

BACKGROUND: Current practice in neurosurgical needle insertion is limited by the straight trajectories inherent with rigid probes. One technique allowing curvilinear trajectories involves flexible bevel-tipped needles, which bend during insertion due to their asymmetry. In the brain, safety will require avoidance of the sharp tips often used in laboratory studies, in favor of a more rounded profile. Steering performance, on the other hand, requires maximal asymmetry. Design of safe bevel-tipped brain needles thus involves management of this tradeoff by adjusting needle gauge, bevel angle, and fillet (or tip) radius to arrive at a design that is suitably asymmetrical while producing strain, strain rate, and stress below the levels that would damage brain tissue. METHODS: Designs with a variety of values of needle radius, bevel angle, and fillet radius were evaluated in finite-element simulations of simultaneous insertion and rotation. Brain tissue was modeled as a hyperelastic, linear viscoelastic material. Based on the literature available, safety thresholds of 0.19 strain, 10 s-1 strain rate, and 120 kPa stress were used. Safe values of needle radius, bevel angle, and fillet radius were selected, along with an appropriate velocity envelope for safe operation. The resulting needle was fabricated and compared with a Sedan side-cutting brain biopsy needle in a study in the porcine model in vivo (N=3). RESULTS: The prototype needle selected was 1.66 mm in diameter, with bevel angle of 10° and fillet radius of 0.25 mm. Upon examination of postoperative CT and histological images, no differences in tissue trauma or hemorrhage were noted between the prototype needle and the Sedan needle. CONCLUSIONS: The study indicates a general design technique for safe bevel-tipped brain needles based on comparison with relevant damage thresholds for strain, strain rate, and stress. The full potential of the technique awaits the determination of more exact safety thresholds.

7.
Neurosurgery ; 79(3): 437-55, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26914259

RESUMO

BACKGROUND: The brainstem is one of the most challenging areas for the neurosurgeon because of the limited space between gray matter nuclei and white matter pathways. Diffusion tensor imaging-based tractography has been used to study the brainstem structure, but the angular and spatial resolution could be improved further with advanced diffusion magnetic resonance imaging (MRI). OBJECTIVE: To construct a high-angular/spatial resolution, wide-population-based, comprehensive tractography atlas that presents an anatomical review of the surgical approaches to the brainstem. METHODS: We applied advanced diffusion MRI fiber tractography to a population-based atlas constructed with data from a total of 488 subjects from the Human Connectome Project-488. Five formalin-fixed brains were studied for surgical landmarks. Luxol Fast Blue-stained histological sections were used to validate the results of tractography. RESULTS: We acquired the tractography of the major brainstem pathways and validated them with histological analysis. The pathways included the cerebellar peduncles, corticospinal tract, corticopontine tracts, medial lemniscus, lateral lemniscus, spinothalamic tract, rubrospinal tract, central tegmental tract, medial longitudinal fasciculus, and dorsal longitudinal fasciculus. Then, the reconstructed 3-dimensional brainstem structure was sectioned at the level of classic surgical approaches, namely supracollicular, infracollicular, lateral mesencephalic, perioculomotor, peritrigeminal, anterolateral (to the medulla), and retro-olivary approaches. CONCLUSION: The advanced diffusion MRI fiber tracking is a powerful tool to explore the brainstem neuroanatomy and to achieve a better understanding of surgical approaches. ABBREVIATIONS: CN, cranial nerveCPT, corticopontine tractCST, corticospinal tractCTT, central tegmental tractDLF, dorsal longitudinal fasciculusHCP, Human Connectome ProjectML, medial lemniscusMLF, medial longitudinal fasciculusRST, rubrospinal tractSTT, spinothalamic tract.


Assuntos
Atlas como Assunto , Tronco Encefálico/anatomia & histologia , Conectoma , Tratos Piramidais/anatomia & histologia , Adulto , Tronco Encefálico/cirurgia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino
8.
Neurosurg Focus ; 38(5): E3, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25929965

RESUMO

OBJECT Craniosynostosis is a condition in which one or more of the calvarial sutures fuses prematurely. In addition to the cosmetic ramifications attributable to premature suture fusion, aberrations in neurophysiological parameters are seen, which may result in more significant damage. This work examines the microstructural integrity of white matter, using diffusion tensor imaging (DTI) in a homogeneous strain of rabbits with simple, familial coronal suture synostosis before and after surgical correction. METHODS After diagnosis, rabbits were assigned to different groups: wild-type (WT), rabbits with early-onset complete fusion of the coronal suture (BC), and rabbits that had undergone surgical correction with suturectomy (BC-SU) at 10 days of age. Fixed rabbit heads were imaged at 12, 25, or 42 days of life using a 4.7-T, 40-cm bore Avance scanner with a 7.2-cm radiofrequency coil. For DTI, a 3D spin echo sequence was used with a diffusion gradient (b = 2000 sec/mm(2)) applied in 6 directions. RESULTS As age increased from 12 to 42 days, the DTI differences between WT and BC groups became more pronounced (p < 0.05, 1-way ANOVA), especially in the corpus callosum, cingulum, and fimbriae. Suturectomy resulted in rabbits with no significant differences compared with WT animals, as assessed by DTI of white matter tracts. Also, it was possible to predict to which group an animal belonged (WT, BC, and BC-SU) with high accuracy based on imaging data alone using a linear support vector machine classifier. The ability to predict to which group the animal belonged improved as the age of the animal increased (71% accurate at 12 days and 100% accurate at 42 days). CONCLUSIONS Craniosynostosis results in characteristic changes of major white matter tracts, with differences becoming more apparent as the age of the rabbits increases. Early suturectomy (at 10 days of life) appears to mitigate these differences.


Assuntos
Craniossinostoses/patologia , Craniossinostoses/cirurgia , Substância Branca/patologia , Substância Branca/cirurgia , Animais , Craniossinostoses/metabolismo , Imagem de Tensor de Difusão/métodos , Coelhos , Substância Branca/metabolismo
9.
Childs Nerv Syst ; 30(8): 1333-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24881033

RESUMO

PURPOSE: Pediatric traumatic brain injury (TBI) represents a prominent yet understudied medical condition that can profoundly impact brain development. As the juvenile injured brain matures in the wake of neuropathological cascades during potentially critical periods, circuit alterations may explain neurological consequences, including cognitive deficits. We hypothesize that experimental brain injury in juvenile rats, with behavioral deficits that resolve, will lead to quantifiable structural changes in hippocampal neurons at chronic time points post-injury. METHODS: Controlled cortical impact (CCI), a model of focal TBI with contusion, was used to induce brain injury on post-natal day (PND) 17 juvenile rats. The histological consequence of TBI was quantified in regions of the hippocampus at post-injury day 28 (PID28) on sections stained using a variation of the Golgi-Cox staining method. Individual neuronal morphologies were digitized from the dentate gyrus (DG), CA3, and CA1 regions. RESULTS: Soma area in the ipsilateral injured DG and CA3 regions of the hippocampus increased significantly at PID28 in comparison to controls. In CA1, dendritic length and dendritic branching decreased significantly in comparison to controls and the contralateral hemisphere, without change in soma area. To extend the study, we examined neuronal morphology in rats with CCI at PND7. On PID28 after CCI on PND7 rats, CA1 neurons showed no injury-induced change in morphology, potentially indicating an age-dependent morphological response to injury. CONCLUSIONS: Long-lasting structural alterations in hippocampal neurons of brain-injured PND17 juvenile animals, but not PND7 immature animals, suggest differential plasticity depending on age-at-injury, with potential consequences for later function.


Assuntos
Lesões Encefálicas/patologia , Hipocampo/patologia , Neurônios/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Córtex Cerebral/patologia , Dendritos/patologia , Dendritos/ultraestrutura , Feminino , Masculino , Neurônios/ultraestrutura , Gravidez , Ratos , Ratos Sprague-Dawley , Coloração pela Prata
10.
Neuro Oncol ; 15(7): 891-903, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23595625

RESUMO

BACKGROUND: As therapies for systemic cancer improve and patients survive longer, the risk for brain metastases increases. We evaluated whether immune mechanisms are involved in the development of brain metastasis. METHODS: We conducted our studies using BALB/c mice bearing syngeneic 4T1 mammary adenocarcinoma cells in the mammary gland. RESULTS: The brains of mice bearing 4T1 tumors at day 14 had no detectable metastatic tumor cells but presented with marked accumulation of bone marrow-derived CD11b(+)Gr1(+) myeloid cells, which express high levels of inflammatory chemokines S100A8 and S100A9. In vitro, S100A9 attracts 4T1 cells through Toll-like receptor 4 and CD11b(+)Gr1(+) myeloid cells through Toll-like receptor 4 and the receptor for advanced glycation end-products. Systemic treatment of 4T1-bearing mice with anti-Gr1 (RB6-8C5) monoclonal antibody reduces accumulation of CD11b(+)Gr1(+) myeloid cells in the day-14 premetastatic brain as well as subsequent brain metastasis of 4T1 cells detected on day 30. Furthermore, treatment of 4T1 tumor-bearing mice with the cyclooxygenase-2 inhibitor celecoxib or genetic disruption of cyclooxygenase-2 in 4T1 cells inhibits the inflammatory chemokines and infiltration of CD11b(+)Gr1(+) myeloid cells in the premetastatic brain and subsequent formation of brain metastasis. CONCLUSIONS: Our results suggest that the primary tumor induces accumulation of CD11b(+)Gr1(+) myeloid cells in the brain to form "premetastatic soil" and inflammation mediators, such as S100A9, that attract additional myeloid cells as well as metastatic tumor cells. Celecoxib and anti-Gr1 treatment may be useful for blockade of these processes, thereby preventing brain metastasis in patients with breast cancer.


Assuntos
Adenocarcinoma/prevenção & controle , Neoplasias Encefálicas/prevenção & controle , Antígeno CD11b/metabolismo , Neoplasias Mamárias Experimentais/prevenção & controle , Células Mieloides/patologia , Receptores de Quimiocinas/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Antígeno CD11b/genética , Calgranulina B/genética , Calgranulina B/metabolismo , Celecoxib , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Técnicas Imunoenzimáticas , Mediadores da Inflamação/metabolismo , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Pirazóis/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Quimiocinas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia , Células Tumorais Cultivadas
11.
Childs Nerv Syst ; 29(1): 43-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23089934

RESUMO

PURPOSE: Controlled cortical impact (CCI) is commonly used in adult animals to study focal traumatic brain injury (TBI). Our study aims to further study injury mechanisms in children and variable models of pathology in the developing brain. METHODS: Develop a focal injury model of experimental TBI in the immature, postnatal days (PND) 7 and 17 rats that underwent a CCI at varying depths of deflection, 1.5-2.5 mm compared with sham and then tested using the Morris water maze (MWM) beginning on post-injury day (PID) 11. Histopathologic analysis was performed at PID 1 and 28. RESULTS: In PND 7, the 1.75- and 2.0-mm deflections (diameter (d) = 3 mm; velocity = 4 m/s; and duration = 500 ms) resulted in significant MWM deficits while the 1.5-mm injury did not produce MWM deficits vs. sham controls. In PND 17, all injury levels resulted in significant MWM deficits vs. sham controls with a graded response; the 1.5-mm deflection (d = 6 mm; velocity = 4 m/s; and duration = 500 ms) produced significantly less deficits as compared WITH the 2.0- and 2.5-mm injuries. Histologically, a graded injury response was also seen in both ages at injury with cortical and more severe injuries, hippocampal damage. Cortical contusion volume increased in most injury severities from PID 1 to 28 in both ages at injury while hippocampal volumes subsequently decreased. CONCLUSIONS: CCI in PND 7 and 17 rat results in significant MWM deficits and cortical histopathology providing two different and unique experimental models of TBI in immature rats that may be useful in further investigations into the mechanisms and treatments of pediatric TBI.


Assuntos
Envelhecimento , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Córtex Cerebral/patologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Lesões Encefálicas/mortalidade , Modelos Animais de Doenças , Hipocampo/patologia , Masculino , Transtornos da Memória/mortalidade , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fatores de Tempo
12.
Neurosurgery ; 69(4): 942-56, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21552169

RESUMO

BACKGROUND: Dipyrone is an analgesic and antipyretic drug usually prescribed for patients with inflammatory conditions. We recently identified dipyrone as an antiapoptotic agent by screening a library of 1040 compounds for their ability to inhibit cytochrome c release from isolated mitochondria. OBJECTIVE: We investigated the potential neuroprotective properties of dipyrone in cerebral ischemia. METHODS: We evaluated the protective effects of dipyrone in experimental models of neuronal hypoxia/ischemia, including an oxygen/glucose deprivation model in primary cerebrocortical neurons and a focal cerebral ischemia model in mice. RESULTS: Dipyrone reduced hypoxia/ischemia injury in both cellular and animal models. Dipyrone inhibited the release of cytochrome c and other mitochondrial apoptogenic factors from mitochondria into the cytoplasm, and attenuated subsequent caspase-9 and caspase-3 activation both in vitro and in vivo. Moreover, dipyrone prevented ischemia-induced changes in Bcl-2 and tBid, and ameliorated oxygen/glucose deprivation-mediated loss of mitochondrial membrane potential. Dipyrone also inhibited ischemia-induced reactive microgliosis. In the cellular models evaluated, dipyrone did not inhibit oxygen/glucose deprivation-induced cyclooxygenase-2 activation. CONCLUSION: Dipyrone is remarkably neuroprotective in cerebral ischemia, and its cyclooxygenase-independent protective properties are, at least in part, due to the inhibition of mitochondrial cell death cascades.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Dipirona/farmacologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Western Blotting , Ciclo-Oxigenase 2/metabolismo , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia
13.
Cell Transplant ; 20(11-12): 1901-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21457614

RESUMO

The technique of central nervous system cell implantation can affect the outcome of preclinical or clinical studies. Our goal was to evaluate the impact of various injection parameters that may be of consequence during the delivery of solute-suspended cells. These parameters included (1) the type and concentration of cells used for implantation, (2) the rate at which cells are injected (flow rate), (3) the acceleration of the delivery device, (4) the period of time between cell loading and injection into the CNS (delay), and (5) the length and gauge of the needle used to deliver the cells. Neural progenitor cells (NPCs) and bone marrow stromal cells (BMSCs) were injected an automated device. These parameters were assessed in relation to their effect on the volume of cells injected and cell viability. Longer and thinner cannulae and higher cell concentrations were detrimental for cell delivery. Devices and techniques that optimize these parameters should be of benefit.


Assuntos
Injeções/métodos , Células-Tronco Neurais/transplante , Células Estromais/transplante , Animais , Automação , Células da Medula Óssea/citologia , Encéfalo , Linhagem Celular , Sobrevivência Celular , Feminino , Injeções/instrumentação , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células Estromais/citologia
14.
Cancer Res ; 71(7): 2664-74, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21324923

RESUMO

Epidemiologic studies have highlighted associations between the regular use of nonsteroidal anti-inflammatory drugs (NSAID) and reduced glioma risks in humans. Most NSAIDs function as COX-2 inhibitors that prevent production of prostaglandin E2 (PGE2). Because PGE2 induces expansion of myeloid-derived suppressor cells (MDSC), we hypothesized that COX-2 blockade would suppress gliomagenesis by inhibiting MDSC development and accumulation in the tumor microenvironment (TME). In mouse models of glioma, treatment with the COX-2 inhibitors acetylsalicylic acid (ASA) or celecoxib inhibited systemic PGE2 production and delayed glioma development. ASA treatment also reduced the MDSC-attracting chemokine CCL2 (C-C motif ligand 2) in the TME along with numbers of CD11b(+)Ly6G(hi)Ly6C(lo) granulocytic MDSCs in both the bone marrow and the TME. In support of this evidence that COX-2 blockade blocked systemic development of MDSCs and their CCL2-mediated accumulation in the TME, there were defects in these processes in glioma-bearing Cox2-deficient and Ccl2-deficient mice. Conversely, these mice or ASA-treated wild-type mice displayed enhanced expression of CXCL10 (C-X-C motif chemokine 10) and infiltration of cytotoxic T lymphocytes (CTL) in the TME, consistent with a relief of MDSC-mediated immunosuppression. Antibody-mediated depletion of MDSCs delayed glioma growth in association with an increase in CXCL10 and CTLs in the TME, underscoring a critical role for MDSCs in glioma development. Finally, Cxcl10-deficient mice exhibited reduced CTL infiltration of tumors, establishing that CXCL10 limited this pathway of immunosuppression. Taken together, our findings show that the COX-2 pathway promotes gliomagenesis by directly supporting systemic development of MDSCs and their accumulation in the TME, where they limit CTL infiltration.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Glioma/prevenção & controle , Células Mieloides/efeitos dos fármacos , Alelos , Animais , Aspirina/farmacologia , Linfócitos T CD8-Positivos/imunologia , Celecoxib , Quimiocina CCL2/imunologia , Quimiocina CXCL10/imunologia , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Feminino , Glioma/enzimologia , Glioma/imunologia , Glioma/patologia , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/enzimologia , Células Mieloides/imunologia , Células Mieloides/patologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Linfócitos T Citotóxicos/imunologia
15.
Neurosurgery ; 67(6): 1662-8; discussion 1668, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21107197

RESUMO

BACKGROUND: Cellular transplantation holds promise for the management of a variety of neurological disorders. However, there is great variability in cell type, preparation methods, and implantation technique, which are crucial to clinical outcomes. OBJECTIVE: We compared manual injection with automated injection using a prototype device to determine the possible value of a mechanized delivery system. METHODS: Neural progenitor cells and bone marrow stromal cells were injected using manual or automated methods. Consistency of injection volumes and cell number and viability were evaluated immediately or 1 day after injection. RESULTS: When cells were delivered as a series of 3 manual injections from the same syringe, the variation in fluid volume was greater than for single manual injections. Automated delivery of a series of 3 injections resulted in a lower variability in the amount of delivery than manual injection for both cell lines (1.2%-2.6% coefficient of variability for automated delivery vs 4.3%-24.0% for manual delivery). The amount delivered from injection 1 to injection 3 increased significantly with manual injections, whereas the amount injected did not vary over the 3 injections for the automated unit. Cell viability 1 day after injection was typically 30% to 40% of the value immediately after injection for the bone marrow stromal cells and 30% to 70% for the neural progenitor cells. There were no significant differences in viability attributed to the method of injection. CONCLUSION: The automated delivery device led to enhanced consistency of volumetric cell delivery but did not improve cell viability in the methods tested. Automated techniques could be useful in standardizing reproducible procedures for cell transplantation and improve both preclinical and clinical research.


Assuntos
Células-Tronco Adultas/transplante , Transplante de Células , Células-Tronco Neurais/transplante , Células-Tronco Adultas/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Contagem de Células/métodos , Transplante de Células/instrumentação , Transplante de Células/fisiologia , Células Cultivadas , Processamento Eletrônico de Dados , Feminino , Injeções/métodos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Seringas
16.
J Neurotrauma ; 27(6): 1091-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20560755

RESUMO

Resveratrol (3,5,4'-trihydroxystilbene) is a plant-derived small molecule that is protective against multiple neurological and systemic insults. To date, no studies have explored the potential for resveratrol to provide behavioral protection in adult animals in the setting of traumatic brain injury (TBI). Using 50 male Sprague-Dawley rats, we employed the controlled cortical impact (CCI) model to ascertain whether post-injury administration of resveratrol would reduce the severity of the well-described cognitive and motor deficits associated with the model. Contusion volumes and hippocampal neuronal numbers were also measured to characterize the tissue and neuronal-sparing properties, respectively, of resveratrol. We found that 100 mg/kg, but not 10 mg/kg, of intraperitoneal resveratrol administered after injury provides significant behavioral protection in rats sustaining CCI. Specifically, rodents treated with 100 mg/kg of resveratrol showed improvements in motor performance (beam balance and beam walking) and testing of visuospatial memory (Morris water maze). Behavioral protection was correlated with significantly reduced contusion volumes, preservation of CA1 and CA3 hippocampal neurons, and protection from overt hippocampal loss as a result of incorporation into the overlying cortical contusion in resveratrol-treated animals. Although the mechanisms by which resveratrol mediates its neuroprotection is unclear, the current study adds to the growing literature identifying resveratrol as a potential therapy for human brain injury.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estilbenos/farmacologia , Análise de Variância , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Contagem de Células , Morte Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Relação Dose-Resposta a Droga , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Resveratrol , Estilbenos/uso terapêutico
17.
J Neurotrauma ; 27(3): 647-51, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19929186

RESUMO

Evidence suggests that the gamma-aminobutyric acid (GABA)ergic system may be involved in cognitive dysfunction following traumatic brain injury (TBI). We investigated the effect of flumazenil treatment, a benzodiazepine antagonist approved by the U.S. Food and Drug Administration, on learning and memory in the immature rat following experimental brain injury. Post-natal day 17 rats were injured using controlled cortical impact. Systemic treatment with flumazenil at 1, 5, and 10 mg/kg was initiated on post-injury day 1 and administered for 13 days via daily intraperitoneal injections. Morris water maze (MWM) testing was used to measure latency to find a submerged platform and the results from experimental and control animals were compared. We demonstrated a significant dose-dependent improvement in MWM performance in drug-treated animals. This is the first study demonstrating the efficacy of flumazenil in reducing post-TBI cognitive deficits and we propose that these effects may be related to modulation of the GABA(A) receptor.


Assuntos
Química Encefálica/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Flumazenil/farmacologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Química Encefálica/fisiologia , Lesões Encefálicas/complicações , Lesões Encefálicas/fisiopatologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Flumazenil/uso terapêutico , Moduladores GABAérgicos/farmacologia , Moduladores GABAérgicos/uso terapêutico , Injeções Intraperitoneais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Resultado do Tratamento
18.
J Neurosurg ; 113(3): 666-72, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19911893

RESUMO

OBJECT: Cell transplantation has shown promise for the treatment of various neurological disorders, but the factors that influence cell survival and integration following transplantation are poorly understood. In fact, little is known regarding how simple but potentially critical variables, including the method of cellular preparation and administration, might affect transplant success. The goal of the present study was to determine the impact of time between tissue preparation and implantation on cellular viability. Time can vary with cell preparation, delivery to the operating room, and surgical technique. This study was also designed to evaluate the sensitivity of various methods of assessing implant viability. METHODS: Cell lines of neural progenitor cells and bone marrow stromal cells were generated from healthy adult mice. On the day of experimentation, the cells were collected, suspended in a balanced salt solution, and sequentially assessed for viability for up to 3.5 hours based on their appearance under phase-contrast microscopy, their ability to retain a fluorescent dye, and their attachment to a cultivation surface for 24 hours. RESULTS: When viability was measured based on the ability of cells to retain a fluorescent dye, there was a decrease in viability of 10-15% each hour. Based on the ability of the cells to attach to a culture surface and grow for 24 hours, viability decreased more rapidly at approximately 20% per hour. In addition, only about one-third of the cells judged viable based on phase-contrast microscopy or acute dye retention were found to be viable based on plating, and only 10% of the cells initially judged as viable were still capable of survival after 3 hours in suspension. CONCLUSIONS: The authors' results indicate that that there can be significant losses in viability between preparation and implantation and that more sophisticated methods of evaluation, such as the ability of cells to attach to a substrate and grow, may be required to detect decreases in viability. The time between preparation and implantation will be an important factor in clinical trial design.


Assuntos
Transplante de Medula Óssea , Técnicas de Cultura de Células/métodos , Neurônios/transplante , Células Estromais/transplante , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Contagem de Células , Linhagem Celular , Sobrevivência Celular , Feminino , Corantes Fluorescentes , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Contraste de Fase , Neurônios/citologia , Neurônios/fisiologia , Células Estromais/citologia , Células Estromais/fisiologia , Fatores de Tempo
19.
Int J Cancer ; 126(10): 2282-95, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19795461

RESUMO

Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIH's REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real-time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glioma/metabolismo , Glicólise , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Distribuição de Qui-Quadrado , Citratos/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioma/enzimologia , Humanos , Macrolídeos/farmacologia , Reação em Cadeia da Polimerase , Proteínas Tirosina Quinases/antagonistas & inibidores , Pseudópodes/enzimologia , Ratos , Regulação para Cima
20.
Childs Nerv Syst ; 25(7): 861-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19415301

RESUMO

OBJECTIVE: Craniosynostosis is the premature fusion of the calvarial sutures and is associated with aesthetic impairment and secondary damage to brain growth. Associated neurological injuries can result from increased intracranial pressure (ICP) and abnormal cerebral blood flow (CBF). Arterial spin-labeling (ASL) MRI was used to assess regional CBF in developing rabbits with early-onset coronal suture synostosis (EOCS) and age-matched wild-type controls (WT). METHODS: Rabbits were subjected to ASL MRI at or near 10, 25, or 42 days of age. Differences in regional CBF were assessed using one-way ANOVA. CONCLUSION: CBF was similar in WT and EOCS rabbits with the exception of the peridural surfaces in EOCS rabbits at 25 days of age. A twofold increase in peridural CBF at 25 days of age coincides with a transient increase in ICP. By 42 days of age, CBF in peridural surfaces had decreased.


Assuntos
Envelhecimento , Craniossinostoses/patologia , Dura-Máter/irrigação sanguínea , Dura-Máter/patologia , Hiperemia/patologia , Análise de Variância , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...